Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(43): 18324-18329, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33078944

RESUMO

Semiconductor nanowires (NWs) capped with metal nanoparticles (NPs) show multifunctional and synergistic properties, which are important for applications in the fields of catalysis, photonics, and electronics. Conventional colloidal syntheses of this class of hybrid structures require complex sequential seeded growth, where each section requires its own set of growth conditions, and methods for preparing such wires are not universal. Here, we report a new and general method for synthesizing metal-semiconductor nanohybrids based on particle catalysts, prepared by scanning probe block copolymer lithography, and chemical vapor deposition. In this process, metallic heterodimer NPs were used as catalysts for NW growth to form semiconductor NWs capped with metallic particles (Au, Ag, Co, Ni). Interestingly, the growth processes for NWs on NPs are regioselective and controlled by the chemical composition of the metallic heterodimer used. Using a systematic experimental approach, paired with density functional theory calculations, we were able to postulate three different growth modes, one without precedent.

2.
J Am Chem Soc ; 142(10): 4570-4575, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32096988

RESUMO

Multimetallic heterostructured nanoparticles with high-index facets potentially represent an important class of highly efficient catalysts. However, due to their complexity, they are often difficult to synthesize. Herein, a library of heterostructured, multimetallic (Pt, Pd, Rh, and Au) tetrahexahedral nanoparticles was synthesized through alloying/dealloying with Bi in a tube furnace at 900-1000 °C. Electron microscopy and selected area diffraction measurements show that the domains of the heterostructured nanoparticles are epitaxially aligned. Although nanoparticles formed from Au alone exhibit low-index facets, Pt and Au form PtAu heterostructured nanoparticles with high-index facets, including domains that are primarily made of Au. Furthermore, the alloying/dealloying of Bi occurs at different rates and under different conditions within the heterostructured nanoparticles. This influences the types of architectures observed en route to the final high-index state, a phenomenon clearly observable in the case of PdRhAu nanoparticles. Finally, scanning probe block copolymer lithography was used in combination with this synthetic strategy to control nanoparticle composition in the context of PtAu nanoparticles (1:4 to 4:1 ratio range) and size (15 to 45 nm range).

3.
Proc Natl Acad Sci U S A ; 116(1): 40-45, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559201

RESUMO

The nanomaterial landscape is so vast that a high-throughput combinatorial approach is required to understand structure-function relationships. To address this challenge, an approach for the synthesis and screening of megalibraries of unique nanoscale features (>10,000,000) with tailorable location, size, and composition has been developed. Polymer pen lithography, a parallel lithographic technique, is combined with an ink spray-coating method to create pen arrays, where each pen has a different but deliberately chosen quantity and composition of ink. With this technique, gradients of Au-Cu bimetallic nanoparticles have been synthesized and then screened for activity by in situ Raman spectroscopy with respect to single-walled carbon nanotube (SWNT) growth. Au3Cu, a composition not previously known to catalyze SWNT growth, has been identified as the most active composition.


Assuntos
Catálise , Nanoestruturas/química , Bibliotecas de Moléculas Pequenas , Cobre/química , Ligas de Ouro/química , Ensaios de Triagem em Larga Escala , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Análise Espectral Raman
4.
ACS Nano ; 12(7): 7206-7212, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29975505

RESUMO

Realizing nanostructured interfaces with precise architectural control enables one to access properties unattainable using bulk materials. In particular, a nanostructured interface ( e. g., a core-shell nanowire) between two semiconductors leads to a short charge separation distance, such that photoexcited charge carriers can be more quickly and efficiently collected. While vapor-phase growth methods are used to synthesize uniform core-shell nanowire arrays of semiconductors such as Si and InP, more general strategies are required to produce related structures composed of a broader range of materials. Herein, we employ anodic aluminum oxide templates to synthesize CH3NH3PbI3 perovskite core-copper thiocyanate shell nanowire arrays employing a combination of electrodeposition and solution casting methods. Using scanning electron microscopy, powder X-ray diffraction, and time-resolved photoluminescence spectroscopy, we confirm the target structure and show that adopting a core-shell nanowire architecture accelerates the rate of charge quenching by nearly 3 orders of magnitude compared to samples with only an axial junction. Subsequently, we fit decay curves to a triexponential function to attribute fast quenching in core-shell nanowires to charge extraction by the copper thiocyanate nanotubes, as opposed to recombination within the perovskite nanowires. Dramatic improvements to charge extraction speed and efficiency result from the substantially reduced charge separation distance and increased interfacial area achieved via the core-shell nanowire array architecture.

5.
J Am Chem Soc ; 140(23): 7213-7221, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29856627

RESUMO

The interactions between nanoparticles and solvents play a critical role in the formation of complex, metastable nanostructures. However, direct observation of such interactions with high spatial and temporal resolution is challenging with conventional liquid-cell transmission electron microscopy (TEM) experiments. Here, a windowless system consisting of polymer nanoreactors deposited via scanning probe block copolymer lithography (SPBCL) on an amorphous carbon film is used to investigate the coarsening of ultrafine (1-3 nm) Au-Pt bimetallic nanoparticles as a function of solvent evaporation. In such reactors, homogeneous Au-Pt nanoparticles are synthesized from metal-ion precursors in situ under electron irradiation. The nonuniform evaporation of the thin polymer film not only concentrates the nanoparticles but also accelerates the coalescence kinetics at the receding polymer edges. Qualitative analysis of the particle forces influencing coalescence suggests that capillary dragging by the polymer edges plays a significant role in accelerating this process. Taken together, this work (1) provides fundamental insight into the role of solvents in the chemistry and coarsening behavior of nanoparticles during the synthesis of polyelemental nanostructures, (2) provides insight into how particles form via the SPBCL process, and (3) shows how SPBCL-generated domes, instead of liquid cells, can be used to study nanoparticle formation. More generally, it shows why conventional models of particle coarsening, which do not take into account solvent evaporation, cannot be used to describe what is occurring in thin film, liquid-based syntheses of nanostructures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Platina/química , Polietilenoglicóis/química , Polivinil/química , Cinética , Solventes/química
6.
ACS Nano ; 10(3): 3144-8, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26928012

RESUMO

Patterning nanoscale features across macroscopic areas is challenging due to the vast range of length scales that must be addressed. With polymer pen lithography, arrays of thousands of elastomeric pyramidal pens can be used to write features across centimeter-scales, but deformation of the soft pens limits resolution and minimum feature pitch, especially with polymeric inks. Here, we show that by coating polymer pen arrays with a ∼175 nm silica layer, the resulting hard transparent arrays exhibit a force-independent contact area that improves their patterning capability by reducing the minimum feature size (∼40 nm), minimum feature pitch (<200 nm for polymers), and pen to pen variation. With these new arrays, patterns with as many as 5.9 billion features in a 14.5 cm(2) area were written using a four hundred thousand pyramid pen array. Furthermore, a new method is demonstrated for patterning macroscopic feature size gradients that vary in feature diameter by a factor of 4. Ultimately, this form of polymer pen lithography allows for patterning with the resolution of dip-pen nanolithography across centimeter scales using simple and inexpensive pen arrays. The high resolution and density afforded by this technique position it as a broad-based discovery tool for the field of nanocombinatorics.


Assuntos
Dimetilpolisiloxanos/química , Nanoestruturas/química , Nanotecnologia/métodos , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Gases em Plasma/química , Impressão/métodos , Dióxido de Silício/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...